
_ccfl-lu

RICIS
• /

Object-Oriented
Requirements Analysis

A Quick Tour

(wouston Univ.) o (p

NOI-2:_Z_;:,

L'n C 1 ,.Jq

5 _,/ol ,'j] _,_ 2:' I

Edward V. Berard

Software Engineering Professional Education Center
University of Houston-Clear Lake

2700 Bay Area Blvd., Box 258
Houston, Texas 77058

(713) 282-2223

Object-Oriented Approaches to
Software Development

Of all the approaches to software development,

an object-oriented approach appears to be both
the most beneficial and the most popular.

Ih_lellu8 _ t o
¢6erf,= So_'=ro Eettleewk_l. k_.. tNO

What Are Objects?

Objects are the physical and conceptual things we find in
the world around us. An object may be hardware,

software, a concept (e.g., velocity), or even "flesh and

blood." Objects are complete entities, e.g., they are not

"simply information," or "simply information and

actions." (Software objects strive to capture as completely

as possible the characteristics of the "real world" objects
which they represent.) Finally, objects are "black boxes,"

i.e., their internal implementations are hidden from the
outside, and all interactions with an object take place via a

well-defined interface.

©Berard Software Engineering, Inc., 1990

Different Kinds of Objects

An instance is a specific thing or characteristic.

CI A class is an object which is used to create instances,

i.e., a class is a template, description, pattern, or

"blueprint" for a category or collection of very similar

items. Among other things, a class describes the

interface these items present to the outside world.

CI A value is the unambiguously defined state (or partial
state) of something. A value is an instance of a class,

or a collection of instances of (possibly dissimilar)
classes.

"Truth In Advertising"

While the intention is to keep things simple, there are

some things you should know:

0/ In object-oriented development in the large

(OODIL), we will encounter objects which are not

single instances or single classes.

Not all "object-oriented" approaches are
class-based.

Correctly identifying objects is not the most
important part of object-oriented software
engineering.

©Berard Software Engineering, Inc., 1990

nnmnnnn

mmmmm

mmmmmml
mmmmml

mmmmmm
mmmmmm
mmmmmmml
mmmmmml
mmmmmmmm

Objects Encapsulate
Knowledge of state

_3 Operations (and their corresponding

methods)

O [In the case of composite objects]

other objects

C3 [Optionally] exceptions

[Optionally] constants

C71 [Most importantly] concepts

mmmmmm
lmmmmm
inmnmm
Immmmml
mnmmml

mmmmml
nmmnml

"mmqn,
l,.,.,,-Imm| _.,_ Imlmll""--ll,,
_----wmmmmmmmmmmm__. mmmmmmmmmmmmn

Localization

Localization is the process of placing items in
close physical proximity to each other, usually
with the connotation of having some mechanism
for precisely defining the boundaries of the
"area" into which the items have been gathered.

©Berard Software Engineering, Inc., 1990

Different Approaches Mean
Different Localizations

_1 Functional decomposition approaches
localize information around functions.

_1 Data-driven approaches localize information
around data.

Object-oriented approaches localize
information around objects.

What Kinds of Items Will Be Largely
Inappropriate For Object-Oriented

Software Engineering

Wm

_l Data flow diagrams

C1 Entity relationship diagrams

CI Relational databases

CI Structure charts

CI Data dictionaries

uw_ soIM,e w_nu,_e. _. t eeo

©Berard Software Engineering, Inc., 1990

Object-Oriented Software
Engineering

Identifying relevant objects

0 Documenting these objects

[71 Applying configuration management to the
objects of interest

El Producing both static and dynamic
object-oriented models of the system.

CDe_wd So_wwe Engmucnng In_, lggO

What We Will Find Out About

Object-Oriented Software Engineering

0 Object-oriented software engineering involves more

than just identifying objects of interest.

£1 Object-oriented development in the large (OODIL) is

different from small object-oriented development.

0 Object-oriented development of real-time systems

brings in its own set of issues.

0 Object-oriented software engineering can be quite

systematic, and quite formal (i.e., mathematical).

ED_wafll $o_wo _,_gm¢Imt I, le_¢.. 1NO

©Berard Software Engineering, Inc., 1990

A Word To The Wise

"new" technology is
of difficulty one will

to

y, the
has in "traditional"

, the
for that

Impact Statement

mmmmm
mmmmm
mmmnm(

mmmmmm
mmmmmm(
mmmmmml
ummmnml

Object-oriented thinking will
impact everything m from the
choice of programming
languages to management
practices.

lmmmmmmmm

©Berard Software Engineering, Inc., 1990

S a_'WARD

Motivation for an

Object-Oriented Approach

Motivation for Object-Oriented Approaches
in General

Motivation for an Overall Object-Oriented
Approach to Software Engineering

Ih41_lMm I 1 -

ud So,ue _, Ice,., IN0

Motivation for an Object-Oriented
Approach In General

13 Object-Oriented Approaches Encourage Modern Software
Engineering.

13 Object-Oriented Approaches Promote Software Reusability.

[71 Object-Oriented Approaches Facilitate Interoperability.

O Object-Oriented Approaches Closely Resemble the Original
Problem.

13 Object-Oriented Software Is Easily Modified, Extended, and
Maintained.

13 GeneralElectric Report

i,la qd Mol_ll_a I_ i 2.

aamJ So_,,e_ tnlt_w_, _.. 1 mo

©Berard Software Engineering, Inc., 1989

Object-Oriented Approaches Encourage
Modern Software Engineering

OOAs require data abstraction

C300As require information hiding

_1 OOAs require localization above the
subprogram level

O OOAs naturally support concurrency

uamm_ _
Iimmd lledltv_ F,_ IM.. I m

"=-%=. _::lIB _3.

OOAs Promote Software

Reusability
[Brown and Quam'ud, 1988]

[St Dennis el al, 1986]

[Russell, 1987]

[Booch, 1987]

[Ledbettef and Cox, 1985]

[Chan, 1987]

[Ratcliffe, 1987]

[Schmucker, 1986b]

[Cox, 1986]

[Tracz, 1987]

[Embly and Woodfield, 1987]

[Margono and Berard, 1987]

-==PR'J

©Berard Software Engineering, Inc., 1989

OOAs Promote Interoperability

Consider a computer network with different computer

hardware and software at each node. Next, instead of

viewing each node as a monolithic entity, consider each

node to be a collection of (hardware and software)

resources. Interoperability is the degree to which an

application running on one node in the network can make

use of a (hardware or software) resource at a different
node on the same network.

_wd So_ae F..nl_l_, Inc.. Ira0

Interoperability Examples

Consider a network with a CRAY supercomputer at one
node rapidly processing a simulation application, and

needing to display the results using a high-resolution color

monitor. If the software running on the CRAY makes use

of a color monitor on a Macintosh Ilci at a different node,

that is an example of interoperability. Another example
would be if the Macintosh Ilci made use of a relational

DBMS which was resident on a DEC VAX elsewhere on

the network.

n =olll=,w _. iw_, i IIIID

©Berard Software Engineering, Inc., 1989

Polymorphism

In the context of object-oriented languages, association

of generic names with behaviors is called overloading of

operator names or polymorphism The advantage of this

encapsulation is that the programmer need keep track of

the names of only a (relatively) few behaviors that are

exhibited by a set of objects; the names of the larger set of

procedures that implement the behaviors need not be

remembered ... [I]t is sufficient for a programmer to know
the name of an abstract behavior to invoke it.

---Smith, Barth and Young in [Shriver and Wegner, 1987]
k_lm_lmmlllW Ue4wllm _7-

_ 8olWere F._mmmlk Ir_. _ImO

An Example of Polymorphism

Consider the Apple Macintosh. On the screen (desktop) of

a Macintosh, there might be several icons, one

representing a document, one representing an application,

and another representing an uninstalled desk accessory.

Sending the same message (for example "duplicate") to

each of these objects will cause each to behave in the same

general manner (for example, each will make a copy of

itself).

OOa,aHI 8_l*,wo 15_A_ bw., 1eoo

©Berard Software Engineering, Inc., 1989

A Better Definition of

Polymorphism

Polymorphism is a measure of the degree of
difference in how each item in a specified
collection of items must be treated at a given
level of abstraction. Polymorphism is increased
when any unnecessary differences, at any level
of abstraction, within a collection of items are
eliminated.

OB_ wa Se_ww* E_tm_l. le_., 11NO

OOAs Facilitate

Interoperability

Rather than attempting to localize based on
functionality, but instead localizing on objects
facilitates interoperability. This is because
viewing the system components in
object-oriented terms encourages software
engineers to describe the same general object
behavior using the same names. (The X
Windows System, for example, is very
object-oriented.)

lamwlv M_hmlkn mlO,

©Berard Software Engineering, Inc., 1989

Object-Oriented Solutions Closely
Resemble the Original Problem

The "real world" may be considered to be highly
object-oriented. All entities (e.g., cars, people,
and computers) may be viewed as being
composed of highly independent objects
(interchangeable parts). A solution which
duplicates this arrangement in software will
resemble the original problem.

Cle4o _ kl_l_14n _11.

OOAs Promote Software Solutions Which

Are Easily Modified

The concept of interchangeable parts not only
helped spur the Industrial Revolution, but is an
object-oriented concept which facilitates
modification and extension of modem electronic

equipmenL The same concept has been applied
with success to software systems, e.g., the Apple
Macintosh and the X Windows System.

IkN tlNIl*lkm II*l_l*n __12.
q_enl So_wre _, In_.. 1_10

©Berard Software Engineering, Inc., 1989

The General Electric Report

Deborah Boehm-Davis and Lyle Ross conducted a study for
General Electric comparing several development approaches for
Ada software (i.e., Structured Analysis/Structured Design,
Object-Oriented Design, and Jackson System Development). They
found that the object-oriented solutions, when compared to the
othersolutions:

V' were simpler (using McCabe's and Halstead's metrics)

v' were smaller (using fines of code as a metric)

v' appeared to be better suited to real-time applications

i¢' took less time to develop

QIE Ibl_rt IiM41vllllen _13.

_mcl S,o_wue F.n_eertng. Incr. I

The Impact of Object-Orientation on
Software Engineering Processes

Originally, people thought of "object-orientation" only
in terms of programming languages. Discussions were

chiefly limited to "object-oriented programming"

(OOP). However, people quickly found that:

V' object-oriented programming alone was

insufficient for large and/or critical problems, and

v' object-oriented thinking was largely incompatible

with traditional (e.g., functional decomposition)

approaches.

©Berard Software Engineering, Inc., 1989

The Progression of
Object-Oriented Technology

O Object-Oriented Programming (1966, 1970)

O Object-Oriented Design (1980)

CD Object-Oriented Computer Hardware (1980)

ID Object-Oriented Databases (1985)

O Object-Oriented Requirements Analysis (1986)

O Object-Oriented Domain Analysis (1988)

Itl_lwtal i 15 •

Lessons Learned From Early
Projects With OOD

O Attempting to use object-oriented design with functional
requirements is ditticult.

0 Loca]izatiottaround functions tends to split high level system
objects and increases integration time; whereas an object-oriented
front end would identify system objects and maximize the
advantage of an object-oriented approach.

0 The benefits of object-oriented approaches are magnified the earlier
in the life-cycle one begins thinking in terms of objects.

O0 tkwV
___._.tt

_hn i 1Q.

©Berard Software Engineering, Inc., 1989

Changing Our Thinking On
Methodologies

In the 1970s and early 1980s, many people believed that

the various "life-cycle phases" (e.g., analysis, design, and
coding) were largely independent. Therefore, one

supposedly could use very different approaches for each

phase with only relatively minor consequences. For

example, one could consider using structured analysis with

OOD. This line of thinking, however, was found to be

largely inaccurate.

Motivation For An Overall
Object-Oriented Approach to

Software Engineering

_1 Traceability

Reduction of Integration Problems

O Improved Conceptual Integrity

_1 Objectification and Deobjectification

1114_Vldla0 g_ OOgll ii II •

Q6or_ Ilolt_,w o E_. It4., 111ml

©Berard Software Engineering, Inc., 1989

Traceability

III

!Functi°n i--IR°quir°m°nts?'--"
Localize

information around
functions

Localize

information around

objects

_m4 8c_vae F..ng_¢#¢_, Ine.. 1NO

Transformation of

Requirements

Object-
Oriented

Requirements

Object
Oriented

Code

qmlermmVk41mm_m r_fqVMmm_,mqh*me.I_

©Berard Software Engineering, Inc., 1989

Reduction of Integration
Problems

Often, different functional areas of a large
project are implemented by different teams of
software engineers. If an object is common to
several functional areas, but has different
attributes in each area, it is likely that each team
will implement the same object in a different
manner. The serious consequences of this will
not become known until the integration phase.

lelellcmllee_ Ide41_llee _ 21 .

_ard So_ue _, Inc., t

Different Views of The Same Object

Imqfalm

Functional
Specifications

for the
Whole System

Specification for _..__Functional Area A

Specification for _
Functional Area B

Specification for _

Functional Area C

Specification for _

Functional Area D

_etl 8¢1_e F.,_lewee1_, lee.. IIPW

©Berard Software Engineering, Inc., 1989

Facilitation of the Introduction of Other

Object-Oriented Techniques

Interviews of those who have used object-oriented

design on large projects shows that two points are

mentioned most frequently:

attempting to use object-oriented design with

functional requirements is difficult, and

V' the benefits of object-oriented approaches are

magnified the earlier in the life-cycle one begins

thinking in terms of objects.

Inlrmiueliml _ O0 MI41_II_ _23,

Improved Conceptual Integrity

Conceptual integrity might be defined as
"being true to a concept," or more simply as
"being consistent."

The more consistent the approach used in the
development of software, typically the more
reliable, more maintainable, and more usable
the software becomes.

©Berard Software Engineering, Inc., 1989

Consistent Solutions

0 It has been observed that an object-oriented approach

to software development seems to yield results which

are superior to those yielded from a functional

decomposition approach. Unfortunately, at present, it

is all too common to functionally decompose a system

at a high level and then attempt to apply an

object-oriented approach to the components.

0 This approach is hardly consistent.

C4NopIual ImalPt_ Me41vell4n __2S.
Og_md 9_twme _, _, 1900

Objectification and
Deobjectification

Object-oriented approaches and systems localize information
around objects. Whenever an object-oriented system must interface
with a non-object-oriented (or weakly-object-oriented) system,
transformations are usually required:

¢' Deobjectiflcation is a process whereby an object is decomposed
into components which can be understood by the
non-object-oriented system.

V' Objectification is the process of reconstructing an object from
more primitive components. The usual connotation is that these
components were supplied by a non- (or weakly-)
object-oriented system.

OOmafV_o En@_. In4,. t 000
14o4ivo@m _2@.

©Berard Software Engineering, Inc., 1989

Examples of When Objectification and
Deobjectification Are Necessary

Probably the two most common examples of objectification and
deobjecrification are:

ur When anobject-oriented applicationrequirespersistentobjects

and attempts to store objects in a relational database. To store
objects, the objects must first be deobjectified. To retrieve the
objects, the objects must be reconstituted (objectified) from the
information stored in the relational database.

t/ In a distributed application, it will be necessary to transmit
objects over the communication links between the nodes. Since
few, if any, communications systems are object-oriented,
objects will have to be decomposed (de,objectified) before
transmission and reconstituted (objectified) upon receipt.

I_ Illo(IvllMm _27.

Minimizing the Need For
Objectification and

Deobjectification

Since objectification and deobjectification have
a negative impact on reliability and efficiency,
we wish to avoid them when possible. An
overall object-oriented approach to software
engineering helps us to minimize the need for
these processes.

MNmlII_Nud _ n III •

©Berard Software Engineering, Inc., 1989

v/

Analysis Versus Design
O Problems With Requirements

O Analysis Tells "What" -- Not "How"

O Design Tells "How"

O Defining the Border Between Analysis and Design

v' The Traditional Meaning of Analysis

V' Design Tends to be Programming Language Specific

V' User Visibility

V' Management Decision Points

t/ Concept of Scope

V' Concept of Viewpoint

_3 Truth In Advertising

Jbts_l= ¥1. _ 1 .

Analysis Vs. Design (Continued)

GI Sources of Confusion

0 Types of Requirements

ar 8c_Eu 8t_m_ h_, Im
*n,_, v. Oeei_ 2.

©Berard Software Engineering, Inc., 1989

:3_qa_'J

Problems With Requirements

To gain a better understanding of what is
required in analysis, we must first understand
that software engineers are seldom presented
with a "clean" set of requirements. Often,
software engineers will have to improve upon, or
create, the initial set of "requirements."

_ml Sab, we Engln_ql, Inc.. S_

Be Suspicious of the Quality of
Any Existing Requirements

Existing requirements usually have one or more of the following
problems:

V' omissions

V' contradictions

•¢ ambiguities

_¢ duplieatiom

_¢ inaccuracies

,¢ ton much design

V' irrelevant ixfformation

W ¢lmll_
¢la_,a II_lmue lt_ntl. IN.. !Im

©Berard Software Engineering, Inc., 1989

MuquaNunu Oud_

Omissions
0 Very often the initial set of user-supplied

requirements (and information) is
incomplete. This means that, during the
course of analysis, the software engineer will
have to either locate, or generate, new
information. This new information is, of

course, subject to the approval of the client.

Note that this location or generation of new
information may be considered by some to be
"design."

_ ve. Gun,in S.

gE=PR'J

Contradictions

0 Contradictions may be the result of
incomplete information, imprecise
specification methods, a misunderstanding,
or lack of a consistency check on the
requirements.

If the user alone cannot resolve the

contradictions, the software engineer will be
required to propose a resolution to each
problem.

©Berard Software Engineering, Inc., 1989

Ambiguities

ZI Ambiguities are often the result of
incompletely defined requirements, lack of
precision in the specification method, or a
conscious decision to leave their resolution to

the software engineers performing analysis.

[131Resolution of ambiguities may require some
"requirements design" decisions on the part
of the software engineers.

W_ ,,k_IiVe. Dmllln 7.

0

Duplications

Duplications may be the outright replication
of information in the same format, or the

replication of the same information in several
different places and formats. Sometimes
duplications are not obvious, e.g., the use of
several different terms to describe the same
item.

CI Software engineers must be carefulwhen
identifying and removing duplications.

Anelg._ VL g_lln I.
eaer ml lleltm_ Enllln_d_ In_. 1lira

©Berard Software Engineering, Inc., 1989

Inaccuracies

0 It is not uncommon for software engineers to
uncover information which they suspect is
incorrect. These inaccuracies must be

brought to the client's attention, and
resolved.

Often, it is not until the client is confronted

with a precisely-described proposed solution
that many of the inaccuracies in the original
requirements come to light.

WB Glullly Jmaat/JVe. Omllln O.

a_PR_

Too Much Design

One of the greatest temptations in software
engineering is "to do the next guy's job," i.e., to
both define a problem and to propose a
(detailed) solution. One of the most difficult
activities during analysis is the separation of
"real requirements" from arbitrary (and

unnecessary) design decisions made by those
supplying the requirements.

qmwa'd So_ mo £_nem_. InQ..1040
_ OipD I0.

©Berard Software Engineering, inc., 1989

Metarequirements

A "metarequirement" is a stipulation of how a
particular system behavior is to be accomplished
which is both supplied and required by the
client. For example, a client might require that
data be encrypted using a specific algorithm.
Metarequirements are design decisions made by
the client. However, they should be kept to a
minimum.

Failure To Identify Priorities

A software engineer must have some basis
for making decisions. Without a
clearly-defined, well thought out, and
comprehensive set of priorities, it will be
difficult to select from a number of
alternatives.

CI Software engineers must realize that
emphasis on one priority often inversely
impacts several others.

nM,dmmm_ cmlnv m_l_ ve. ONllp la.

©Berard Software Engineering, Inc., 1989

Irrelevant Information

Software engineers are often reluctant to throw
away any information. Their clients often feel it
is better to supply too much information rather
than too little. Without some clear cut

mechanisms to identify and remove irrelevant
information, it will be difficult to develop
accurate, cost-effective, and pragmatic solutions
to a client's problems.

R_I_mm _tv

_Ed _WO _. lao.. t gm
Jn_n_ VL Oeei_ 13.

Analysis Tells "What"--.
"How"

Not

It is the job of analysis to describe what is
needed, not how it is to be accomplished.
Software engineers must be aware that there is a

very strong tendency to describe how while
failing to accurately describe what needs to be
done.

©Berard Software Engineering, Inc., 1989

Examples of "What"

0 The system must recognize valid Ada source code.

_1 If a node on the network "goes down," the network will
dynamically re-configure itself.

CJ When the power is turned on the system will conduct a self test, i.e.,
a power on self test or "post."

C3 Users will be able to add items to the database, delete items from
the database, and be able to determine how many items are currently
in the database.

0 The product will handle up to 1000 lransformations every 10
milliseconds.

0 All calculations must be accurate to 10 significant digits.

GIWIm Iom_m _, tin.. I tit

Examples of "How"

CJ An old item may be exchanged for a new item by first deleting the
old item, and then adding the new item.

C_ Trigonometric functions will be evaluated using int'miteseries
approximation.

1_ Incomingdatawill be sampled 200 times a second with a stadstical
analysis done to remove any "system noise," thus assuring the user
of"clean data."

To place a text window on the screen, the user must first create a
woAstatm, then create the text window, and finally, add the text
window to the desktop.

G6w_ IIoAw_ I_lmml_l, I_., I roll

©Berard Software Engineering, Inc., 1989

Design Relates To "How"

Once the client's requirements have been
established, it is the software engineer's job to
design a system which will meet these

requirements. It is during design that a software
engineer must describe the details of how the
behavior of the system is to be accomplished u
within the constraints stipulated by the client.

"What" Vs. "How" Is
Insufficient

While saying that analysis should address
"what," and not "how" is accurate, it does not

provide any detailed guidance to the analyst. We
must better define the differences between

analysis and design. Further, it is also desirable
to define the types of products one expects from
analysis.

©Berard Software Engineering, Inc., 1989

The Border Between Analysis
and Design

O The Traditional Meaning of Analysis

O User Visibility

Design Tends to Be Programming Language Specific

_3 Management Decision Points

O Concept of Scope

O Concept of Viewpoint

_ad _o _,laL. t ling

CI

a_PR'J

The Dictionary Meaning of
Analysis

The separation of a thing into the parts or

elements of which it is composed

The examination of a thing to determine its
parts or elements; also a statement showing
the results of such an examination

m Merriam-Webster Dictionary

IleMw llNmm _u_l_le laa

¢mw_rd _q-e F.s.OW_l_ Vw., t,M8
Ana_do WL Omip aO.

©Berard Software Engineering, Inc., 1989

The Traditional Meaning of
Analysis

In technical endeavors, we expect the following things from an
analysis effort:

I/ an examination of a concept, system, or phenomenon with the
intention of accurately understanding and describing
concept, system, or phenomenon,

_¢ an assessment of the interaction of the concept, system, or
phenomenon with its existing or proposed environment,

proposal of two to three alternative solutions for the client with
an accurate and complete analysis of the alternatives, and

an accurate and complete description of the solution to be
delivered to the client.

The Traditional Border

Between Analysis and Design

An examination of virtually all software

requirements analysis methodologies shows that
requirements analysis ends with the description
of the "user interface." "User" may be taken to
mean anything from a human user, to other
software, to computer hardware.

©Berard Software Engineering, Inc., 1989

_sugn Tends To Be Programming
Language Specific

Cl In truth, requirements analysis for software
applications is somewhat influenced by the choice of

programming language. However, most approaches to
requirements analysis strive to be independent of
programming language considerations.

Most of the suggested approaches to software design,
on the other hand, deal with programming language

concepts (e.g., modules, packages, and software
interfaces) directly.

oaa'_ SoPUaNceEallm¢_mng.I_NL,I_
Anal,_le VL Omlln 23.

User Visibility
CI "User visibility" is a term used to describe

the level of client involvement during the
software life-cycle. User visibility is highest
during the "analysis" and "use" phases. User
visibility is lowest during the "design" and

"coding" phases.

Once the client has accepted the solution
described by the analyst, the solution is then
turned over to the designers.

©Berard Software Engineering, Inc., 1989

oo_

Confidence In the Solution

Both the client and the software analyst must be
comfortable with the solution proposed by the
analyst. Each must have a high degree of
confidence that the resulting system will perform
as expected. Further, the designers should have
both an accurate description of what they must
deliver, and a means of judging the merits of
each design alternative they may consider.

Goals for the Analyst

The requirements analyst must describe
"what the system must do," and avoid the
details of "how the system will accomplish
its objectives." The analyst must also reduce
the need for the user to be "visible" during
design.

Therefore, the analyst must describe the
system precisely enough to accomplish these
goals.

©Berard Software Engineering, Inc., 1989

Management Decision Points

0 The end of each phase (or partial phase) of the

software life-cycle is a decision point. Management
must often make decisions on how to proceed, or

whether to proceed. Without a system specified in
sufficient detail, meaningful decisions are often

difficult, if not impossible.

0 The requirements analyst must propose a solution in

sufficient detail to allow meaningful management
decisions.

The Concept of Scope

In conducting any form of analysis, a software
engineer must define the boundaries of the
system being analyzed, i.e., the scope of the
system. There are two generally recognized
levels of scope, and, depending on how the
software engineer attacks the problem, he or she
may deal with only one level.

©Berard Software Engineering, Inc., 1989

v'

v'

Two Levels of Scope

There are two instances where there will be

two levels of scope:

When the analysis must include a model of
an existing process which is to be
automated.

When the analysis includes items other
than software, e.g., hardware and users.

Beginning With Two Levels of
Scope

In either of the two previously mentioned
situations, the software engineer will start with
an overall system model, and later focus on the
actual software system. The first scope level will
include non-software items. The second level

will include only the software.

©Berard Software Engineering, Inc., 1989

One Level of Scope

Sometimes, the software engineer will choose to
focus solely on the software system during the
analysis. In this case, only one level of scope is
defined, i.e., the boundary of the software with
the rest of the overall system.

The Concept of Viewpoint

Very often during analysis, software engineers
almost automatically pick the viewpoint of a
user of the system. Sometimes this results in an
awkward analysis and design. Shifting one's
viewpoint can result in a simplification of the
analysis.

©Berard Software Engineering, Inc., 1989

Truth In Advertising

O The concepts of "life-cycle phases," e.g., analysis,

design, and testing, are artificial concepts introduced

primarily by management to provide some level of

monitoring and control over a software engineering
project.

As we will see later, the object-oriented life-cycle is

different. Specifically, it is a recursive/parallel

life-cycle, which means that analysis will be

performed at many different points, rather than "all at
once."

oo1_ le h

Sources of Confusion
The following items seem to confuse software

engineers:

Some items are mentioned (described) in analysis,

but do not become part of the design, i.e., they are

unique to the analysis.

v' Some items are created in design, i.e., they were

not even mentioned during analysis.

All that is not expressly forbidden is allowed.

All that is not expressly allowed is forbidden.

©Berard Software Engineering, Inc., 1989

Types of Requirements

.-..--._

There are three major types of requirements:

¢' User Driven

¢' User Reviewed

User Independent

k Sa_Qm,n _. IN..Im

User-Driven Requirements

User-driven requirements are requirements
which are defined and specified entirely by
the client. The software engineers
responsible for developing a solution which
meets the user-driven requirements have
little, or no, input to the definition and
specification of the system requirements.

This is not a desirable situation.

W'l_lm
4_wml _ Enpeem_ InL, I m

_ w, omlp 34.

©Berard Software Engineering, Inc., 1989

User-Reviewed Requirements

User-reviewed requirements are requirements which are

specified by the client and software engineers working

together. It is not the software engineers' job to be an

expert in the client's application domain. It is, however,

required that software engineers possess the skills,

methods, techniques, and tools which will enable them to

effectively define and specify requirements through
interactions with the client.

4meter4 Sc_l_lre _, In_. 1NO

User-Independent
Requirements

User-independent requirements are those
requirements which must be defined and
specified without a particular user being present.
The most common example of user-independent
requirements are those requirements which are
def'med by software product vendors when they
choose to develop a new software product.

oewm_l _ I_tgb_m_l. _. 1tm

©Berard Software Engineering, Inc., 1989

The Overall OORA Process

C] Understanding What Comes Before OORA

_1 Understanding the Mechanisms By Which the Process May Be
Accomplished

_1 Identifying Sources of Requirements Information

Characterizing the Sources of Requirements Information

O Identification of Candidate Objects

C) Building Object-Oriented Models of Both the Problem and Potential
Solutions, As Necessary

_md _ b4t_wwI_Irql,trot,t_

O_lilOORAle_4No _ I .

The Overall OORA Process
(Continued)

O Re-Localization of Information Around the Appropriate Candidate
Objects

Selection, Creation, and Verifw.afion of OCSs, Subsystem
Specifications, and Systems of Objects Specifications

O Assigning OCSs. Subsystems, and Systems of Objects to the
Appropriate Section of the OORS

Development and Ref'mement of the Qualifications Section

O Development and Rermement of the Precise and Concise System
De.priori

Ovaml OO_t TelmO
N,nm h*bwe I_mm_l. _. *tm

OwrdOO_k(tmmm i _.

©Berard Software Engineering, Inc., 1989

Domain Analysis Comes
Before OORA

Hopefully, an organization has conducted some form

of object-oriented domain analysis. This analysis
must:

V' Identify reusable objects within the appropriate

application domain(s)

V' Document these objects

V' Place these objects into some form of reusability

system

Illh_ OOIIA O_wJOOl_l_ew=e u 3.

0

O

Feasibility Studies May Be
Conducted Before OORA

One, or more, feasibility studies may be
accomplished before OORA for a given
project. Feasibility studies often use the

techniques of analysis and design, although
usually on a much more informal basis.

There are several types of feasibility, e.g.,
financial, technical, time-related, and
marketing.

_d OORA IWt_eNO _4.

©Berard Software Engineering, Inc., 1989

oogtm

Understanding the Mechanisms by
Which the OORA Process May be

Accomplished
O People Think Differently

C3 Each Project Is Different

C300RA Is an Iterative Process

0 Some Processes May Be Accomplished Concurrently

_3 The OORA Effort May Be Accomplished At More Than One Point
In the Life-Cycle

O The OORA Effort May Be Driven By External Circumstances

_300RA Should Not Be Driven By Low-Level Issues

O Verification, Validation, and Software Quality Assurance Are
Always Important

_=nl _=re _, Ine,, tu=

People Think Differently

[D It is unusual for two different people to approach the
same task in an identical manner -- at least on a

microscopic level. It is quite normal for individuals to

impose their own problem-solving techniques within a

specified approach to a life-cycle process.

CI For example, some people may be quite happy to
identify objects first, and worry about how they will
be used to solve the clients problem later. Others must
have an understanding of the overall problem before

they can even begin to work.

OOM
Ogawel &_J_mro FJ_@memg. tae., t @I

@wqi_l_,omm _ Oo

©Berard Software Engineering, Inc., 1989

_E=PR'J

Each Project Is Different

There are many things which affect how OORA,
or any analysis process, is accomplished. These
factors tend to change with each project. For
example, a sequential approach may work for a
small project, whereas a highly concurrent and
iterative approach to OORA may be better suited
to a large project.

0OI1_ /

¢6erwd $oltmao _. Inc. 1 tim

q_m'd OOPtA P_eNO _7.

OORA Is an lterative Process

At a particular level of abstraction, for a
particular system of objects, or for a particular
subsystem the OORA analyst may make several
passes through the process, to introduce changes
and/or successively refine the analysis. The
larger the project, the greater will be the
tendency to make several passes (i.e., iterate).

©Berard Software Engineering, Inc., 1989

m_

Some Processes May Be
Accomplished Concurrently

Although some may attempt to portray OORA as
strictly sequential, there are often parts of the
process which may be accomplished in parallel.
For example, one may simultaneously be
identifying objects of interest, and building an
object-oriented model of either the problem or a
proposed solution.

_RA IdNIwllmnm

_md II_tHre V.n_, IM., 1_

o_lfmll OORA I_lml DO.

OORA May Be Accomplished At More
Than One Place In the Life-Cycle

The object-oriented life-cycle is a
"recursive/paraUer' life-cycle. This means that,
rather than all the analysis being completed up
front (as in a waterfall life-cycle), analysis may
be distributed throughout the life-cycle (i.e.,
"analyze a little, design a little, implement a
little, and test a little). What is important is that
we perform the analysis which is appropriate to

the view of the system at hand.
OORAUMk_Mml ONfdOOAAl_em_ i t0 .

¢leaml _ _ m_. tWO

©Berard Software Engineering, Inc., 1989

V'

v'

V'

V'

OOAA_

OORA May Be Driven By External
Circumstances

The OORA process may be impacted by

such things as:

the availability of information

the introduction of changes

the availability of staff and other resources

an increasingly better understanding of the

problem

Ovwdl OONA II_mtl _11,

eeera'd _k_w_e _, In_. 1NO

OORA Should Not Be Driven

By Low-Level Issues

Except for true metarequirements, OORA

decisions should not be driven by low-level

issues, e.g., how a concept might be

implemented in a given programming language.

OOMA MNItm_m0

omwmJ So4i,_mm'._. k'_wm..IOUl

Owrd OOMA Iqe_eo _12.

©Berard Software Engineering, Inc., 1989

Commission Vs. Omission

The two primary life-cycle "sins" are commission and

omission. Commission implies that we specify too much
detail too soon. Omission implies that we leave out critical

information. These two "sins" must be constantly
balanced. If we supply too much detail at one point we

will restrict our choices at a later point. If we do not supply
enough information at one point, we may have people
making inappropriate and incorrect decisions at a later

point.

00NA

k lldkl* fJ_kaad_l. Io., I|

Ovwel1001_ _ _13.

Verification, Validation, And
SQA Are Always Important

0 Verification answers the question: "are we solving the

problem correctly?" Validation answers the question:

"are we solving the correct problem?"

0 Software quality assurance ensures that we are

addressing some aspect of the software life-cycle in an

appropriate and approved manner.

0 These processes will be done continually throughout

the OORA process.

_alA MNImmMm

Nm,_ kbwe I_m,m,,_ _ne.. 1_

O_fMI O0(_k Pnl4moo u14°

©Berard Software Engineering, Inc., 1989

The OORA Process

D

D

OOIqA I_m

_1 Identify the Sources of Requirements Information.

O Characterize the Sources of Requirements Information.

O Identify Candidate Objects.

CI Build Object-Oriented Models of Both the Problem and Potential
Solutions, As Necessary.

D Re-Localize the Information Around the Appropriate Candidate
Objects.

O Select, Create, and Verify OCSs, Subsystem Specifications, and
Systems of Objects Specifications.

O Assign OCSs, Subsystem Specifications, and Systems of Objects
Specifications to the Appropriate Section of the OORS.

Develop and Refine the Qualifications Section.

Develop and Refine the Precise and Concise System Description.

_j OOSUt Iltemm

_lr4 k.llm we _. I_.., I ¢m=

Identifying Sources of
Requirements Information

Very seldom are requirements for a given project contained in a
single, self-contained document. The OORA analyst must identify
all valid, worthwhile sources of requirements information. These
sources can include, for example:

¢' Pre-existing requirements documents

¢' Standards documentation

v' Knowledgable people

¢' Previously existing software, including prototypes

¢' Descriptions of"real world" systems of objects

_8tOq _l

(lO_ld 9ol_le E_J_ledlq, Inc., I @10

O_ra 00RA Iqo_ll _1@.

©Berard Software Engineering, Inc., 1989

Characterizing Sources of
Requirements Information

When characterizing sources of requirements
information, we are interested in two things:

The characteristics of the source itself

The characteristics of the information

which the source can provide

cmtl
OOerwe 8_vare F..n_i_m_,N., 100e

Characteristics of the Source

The following are importaat considerations when attempting to
characterize the source of requirements information."

The c_tibility of t_e source

The easeof access the OORA analystwill have to the sota'ce

it The level of authority associated with the somce

" it The typesof information which thissource can provide

it The respondveness of the source

t/ The longevity of the source

ml _-il _ i mill,

©Berard Software Engineering, Inc., 1989

2__--_r,_7o

Characteristics of the Information
Provided by the Source

The following are important considerations when attempting to
characterize the information provided by a source of requirements
information:

The form of the information provided, e.g., textual, graphical,
verbal, executable, and machine-readable

W' The completeness of the information provided by the source

W' Identifying which specific aspects of the requirements are
covered by the information

Determining how current the provided information is

¢' Determining the volatility of the information

c_s_malnl
¢em_ ik_twao F.ngn41n_, In_. 1_

Characteristics of the Information
Provided by the Source (Continued)

s/ The relevance of the information

,/ How the information can be verified

s/ The availability of the information

The understandability of the information

t/ The importance and priority of the information

t/ The interrelationships among the pieces of information, e.g.,
how will a change in one piece of information impact another
piece of information

¢ltmwamm_l k,ss.us
oeq_,ml sogm_m'eEz_,lln_mi_.ql.I_,a..11m

OvofadlOORA _ n20.

©Berard Software Engineering, Inc., 1989

Identification of Candidate Objects,
Classes, Systems of Objects, and

Subsystems

Even before one has a fairly complete set of
requirements information, one can begin to
identify candidate objects. However, the OORA
analyst should be reluctant to finalize the
definition of any object-oriented item until there
is a high degree of confidence that all the
relevant information relating to that item has
been identified.

_leeI_lllem j O,AwdlOO_kPN_ _21 .

la4rlNI _N'Q _. k_L, lOre

Short Maps

__-,rlvTJ

In the process of identifying candidate object-oriented
items, the OORA analyst should keep a record of where a

particular piece of information was found. The collection
of these records for all the object-oriented items is referred

to as a "short map." The form of a short map is very
similar to an index, i.e., the name of each object-oriented

item is listed (typically in alphabetical order), followed by

pointers indicating where information on the item can be
found.

Ideml_q NDmS

_ 80_m II_gme_g Inc.. I _

O_OORAP_mNe ! 2| •

©Berard Software Engineering, Inc., 1989

Building Object-Oriented Models of the
Problem and Proposed Solutions

Some analysts find it useful to build object-o_nted

models of parts of the problem and/or solution prior to

identifying all of the object-oriented items which comprise

the system. The form of these models may be textual,

graphical (e.g., Petri net graphs), or a mixture of both.

These models may be used later in the construction of the

applications-specific section of the object-oriented
requirements specification.

06ware S_lwme E_il_ng. _. lu=

O_wdl OOgt& PteeNI _23.

Relocalizing Information Around the
Object-Oriented Items

This step requires that we gather everything we know

about a particular object, class, system of objects, or

subsystem, and place all this information in one place. In

the case of a class, instance, or (some) system of objects,

we refer to the relocalized information as a potential "OCS

precursor." Exactly how we will treat subsystems requires
further analysis.

Ilo4.emkal_l

oem_ So.vine _ InL 19m

Ovwd OOIL4k I1_ _24 .

©Berard Software Engineering, Inc., 1989

Each Object Must Be
Associated With a Class

0 If we have identified any instances or systems of

objects, each of these must be associated with a
specific class. In fact, we will often use this
information to better define the class.

_3 Although we typically only define OCSs for classes, if
a language allows us to define instances without first

defining a class, and there is no compelling reason to
define a class for the instance we may occasionally
create an OCS for an instance or system of objects.

Ol_all O_NA IINme_, _2S.
_l SolVme _. IRe..1940

Defining Subsystems

0 A subsystem is a collection of program units which

exports an object-oriented capability, e.g., windows,
menus, switches, and panels. A subsystem may be

built around a single class, or it may involve many

different, but highly-related classes. There need not be

a direct or indirect connection between any two

components in the same subsystem.

17l Subsystems are to classes as classes are to, say,

operations.

_we _, I_, 11111

, Owqll OOAA IN.me _2tl,

©Berard Software Engineering, Inc., 1989

The Selection, Creation, and Verification
of OCSs and Subsystems

At this point in the OORA process, after examining
the OCS precursors and tentative subsystem

descriptions, the OORA analyst should have enough
information to:

V' Select a previously-defined instance or class

(which has been documented with an OCS) to use
for a particular instance or class which has been

documented in the form of an OCS precursor

_' Use the information available from a particular
OCS precursor to define a new instance or class,
and document that instance or class with an OCS

O_md OORA Iq_mNe _27.
OOmwd S(_wee _. b_., I Sl0O

3S3;P,_

The Selection, Creation, and
Verification of OCSs and

Subsystems
Use the information available from a particular

tentative subsystem description to select a
previously-defined subsystem

V' Use the information available from a particular
tentative subsystem to create a new subsystem, or
to extend a currently-existing subsystem

eewml I_t_,me I[_moome. o_. 1MO
O_dOOqqA_ m2l I ,

©Berard Software Engineering, Inc., 1989

What About Objects and Other
Application-Specific Information

At this same point, the OORA analyst will also
have information regarding some of the objects
which are instances of the defined classes, and

other application-specific information. This
information is not to be lost or discarded. Rather,

it is to be placed in the appropriate sections of
the application-specific section of the OORS.

OIl_r_ _ f.nlmqm_l. It,L, t NI

All Information Must Be

Verified and Quality Assured

Each of the classes, instances, systems of
objects, and subsystems should be explicitly
verified and quality assured. The same should be
done for the application-specific information
associated with these items.

,mmewm__ mh_ow_u,o,4_,m.. _m

._(1o$IaL_ m _ .

©Berard Software Engineering, Inc., 1989

Placing Items In the Appropriate Section
of the OORS

O Each OCS, subsystem specification, and system of

objects specification must be assigned to the proper

section (object-general or application-specific) of the
OORS. The OORA analyst should take care to make

sure that the items are properly organized.

If the OORA analyst has not already done so, any

application-specific information should be placed into

the proper subsection of the application-specific
section.

_la _w_ E_Np_qm_. the. tllm

Development of the
Qualifications Section

The creation, verification, and quality assurance
of the qualifications subsection of the
application-specific section of the OORS usually
continues throughout the OORA process.
Further, it is not until the precise and concise
system description is finalized that we can
finalize the qualifications section.

©Berard Software Engineering, Inc., 1989

Development of the Precise
and Concise System

Description

Like the qualifications section, the precise and
concise system description is often addressed
throughout the OORA process. Once we are
comfortable with our system description (i.e., it
is complete, verified, and quality assured), we
can verify and quality assure the entire OORS.

Ilaw_l _ltBmo I_InO_l, InL, IllU

OORA

Map

©Berard Software Engineering, Inc., 1989

f

Object and Class Specification
Class: Lamp

1.0 Precise and Concise Description

. A lamp is the abstraction of a simple lamp that can either be turned on
(illuminated) or turned off (extinguished).

tamp

. Instances of this class require two operations, i.e., one which will allow a
given lamp to communicate to the "outside world" that it has been "turned
on," and one which will allow a given lamp to communicate to the "outside
world" that it has been "turned off."

, The suffered operations for a lamp are: turn the lamp on, turn the lamp off,
Assign (the state of one lamp to another), and Is_On (is a given instance of
this class in the "on" state). Since a lamp stays either on or off until

instructed to change its state, the states of a lamp are persistent.

4. The lamp class will export no constants or exceptions.

2.0 Graphical Representations

2.1 Static Representations

2.1.1 Semantic Networks

Is_On lis-a--I B°°l an I
has_attribute

I Lamp I

2.1.2 Notes on the Semantic Networks

. Two different instances of this class are equal if they are both in (or, are
both not in) the "on" state.

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Lamp

1

5.2 Exceptions

° The exception Lamp_Not_Found will be raised if there is a request to turn a
specific lamp on, and there is no lamp in the panel which corresponds to the
specific lamp referred to in the request.

©Bcra_ Softw_ Engineemg, Inc., 1989 (10/29/90)
18620 Mamacy Road, Ca_mantown. biD 20874
(301)353-9652

Floor An'ival
Panel

4

7. The exception Lamp_Not_Found is associated with a floor arrival panel.

2.0 Graphical Representatlons

2.1 Statlc Representations

2.1.1 Sernantlc Networks

FIoorArrival Panel J

2.1.2 Notes on the Semantic Networks

. From the outside view, there is no discemable structure or attributes for a

floor arrival panel.

. Though it seems obvious that the floor arrival panel deals with lamps, these
objects can neither be detected or affected directly from the "outside". It is
for that reason that these objects do not appear on the semantic net.

2.2 Dynamlc Representations

2.2.1 State Transltlon Dlagrams

2.2.1.1 State Transltlon Diagrams for Non-Spontaneous State Changes

Turn On Lamp M

Tum On

Lamp N_

Turn On Lamp N

urn On

pM

2.2.1.1.1 Notes on StateTransltlon Dlagramsfor Non-SpontaneousState
Changes

I* The states shown in the diagram cannot be interrogated. Specificafiy, there
are no operations provided that will allow a client of the abstraction to

determine if a particular floor arrival panel lamp is on or off.

. A client may not interact directly with a specific floor arrival panel lamp.
Clients deliver a request to turn a particular floor arrival pand lamp on or off
via the Turn_On_Lamp operation. It is the computer circuitry in the floor

arrival panel which will actually turn a lamp on or off, or leave a lamp in its
particularstate.

3. Since a given lamp will only be turned on or off based on a specific request,
a floor arrival panel with any given lamp lit, and all others not lit, represents
a persistent state.

©Beratd Software Engineering, Inc., 1989 (10/29/90) Floor Arrival 3_m__318620 Mateney Road, Gem_antown, MD 20874 Panel
(301) 353-9652 2 ,

. Assign: This constructor operation copies the state of one floor arrival panel
object to another instance of the same class. Since the Assign operation
produces an exact copy of an existing floor arrival panel, the resulting copy
may be in any one of the states shown in the STD. The Petri Net Graph
representation of the Assign operation is:

3.0 Operations

3.1 Required Operations

1. There are no required operations for this class.

3.2 Suffered Operations

Operation Method

Turn_On_Lamp Turns on the lamp corresponding to the
given destination. If the lamp is already
on, then there is no effect. This

operation also turns off any other lamp
which may be lit.

• Assign • The state of one instance of this class to
another instance of the same class.

4.0 State Information

. The state for a floor arrival panel may be defined as which a single lamp
(indicating a particular destination (floor)) is on, i.e., all other lamps must,
by definition, be off. (Obviously, you cannot be at two different
destinations simultaneously.) Note that there is no way for the client of the

floor arrival panel to interrogate this state.

5.0 Constants and Exoel_ons

5.1 Constants

1. This class will not provide any constants.

©Bcrard Software Engineering, Inc., 1989 (10/'29/90) Floor Arrival
18620 Mateney Road, Germantown, MD 20874 Panel
(301) 353-9652 3

Object and Class Specification
Class: Floor Arrival Panel

1.0 Precise and Concise Description

o Conceptually, a floor arrival panel is a panel containing a number of lamps

(typically one lamp for each destination (floor)). The floor arrival panel also
contains some computer processing capability. This computer processing
capability allows the floor arrival panel to turn a particular lamp on, based
on a request, and to automatically ensure that all other lamps are off.

: :::: : ::: : : =====================================:,:;:: ::::::::::::::::::::::::: :.:_:`:_:_:_:_:_:_:.:_:+:_:_`:_P_._-._._.;_;-_:._._;._-.;-_

I : :_ : __ !: i_ii_i_iii! _i i_`:_:_._!.!.i.i_.i.i_i.i.i_i.i.i.i_i.i.i_i.i.i_i_i_.i_i_i.._:':...;.___a_tlilltlllllllim_

I []

Destination

. At any one time, only one lamp in the floor arrival panel may be lit (i.e.,
on). A given lamp in the floor arrival panel becomes lit (i.e., is turned on)

based on an invocation of the Turn_On_Lamp operation. Once a lamp
becomes lit, it stays lit until the floor arrival panel receives a request to turn
another lamp on. Once a particular lamp is lit, any additional requests for the
lamp to be lit are ignored. No facility is provided to determine the state of
individual lamps contained in the floor arrival panel.

. Obviously, any request to turn a given lamp on must contain some way of
uniquely identifying the specific lamp. If the lamp identified in the request is
not contained in the floor arrival panel, the exception Lamp_Not_Found will
be raised.

o The suffered operation for the floor arrival panel is "Turn On Lamp" (for a
given destination).

5. Users of the Floor_Arrival_Panel class must also supply:

a class with discrete scalar values which will be used to uniquely
identify destinations, i.e., Destination_ID, and

a value of this class which will represent the largest permissible
value for a destination which can be specified by floor arrival panels
which are instances of the Floor_Arrival_Panel class. Valid

destinations will be represented by all values of the class
Destination_ID from the smallest value up to, and including, the
specified largest permissible value for a destination.

. The state for a floor arrival panel may be defined as which particular lamp is
on.

©Beratd Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Gcrmantown, MD 20874
(301) 353-9652

Floor Arrival
Patti

1

5.0

5.1

5.2

Note that there is no way for the client of the destination panel to interrogate
these states. Note further, that only one button in a given destination panel
may be pressed at one time. If an attempt is made to press two, or more,
destination buttons simultaneously, and at least of the destination buttons
has a corresponding lamp which is not lit, the destination panel computer
circuitry will select a single destination which will be transmitted via the
"Signal" operation.

Constants and Exceptlons

Constants

1. This class will not provide any constants.

Exezl_orB

It The exception Lamp_Not_Found will be raised if a "lamp on/off request" is
received and there is no lamp in the panel which corresponds to the specific
lamp referred to in the request.

©Beta_ Softwlg¢ Engin_Sng, Inc., 1989 (1(g29/90)
18620 Matmey Road, Gamantown, MD 20874
(301) 353-9652

DestinationPanel

6

. Pressing a destination button whose corresponding lamp is already lit will
have no effect.

. If an attempt is made to simultaneously press two, or more, destination
buttons will result in the following:

All pressings of destination buttons whose corresponding lamps are
already lit, will be ignored.

If two, or more, destination buttons, whose corresponding lamps
are not lit, are pressed simultaneously, one of the destinations will

be picked in a non-deterministic way, and notification of a request
for that destination alone will be sent via the "Signal" operation.

3.0 Operatlons

3.1 Requlred Operatlons

Operation Method

Signal Alerts the destination panel's client that
a button corresponding to a specific
destination has been pressed.

3.2 Suffered Operations

Operation Method

• Turn On Lamp Turns on the lamp corresponding to the
given destination. If the lamp is already
on, then there is no effect.

Turn_Off_Lamp Turns off the lamp corresponding to the

given destination. If the lamp is already
off, then there is no effect.

* Assign • The state of one instance of this class to
another instance of this class.

4.0 State Information

1. The state for a destination panel may be defined as:

the sum of the states of the lamps (i.e., on or off) which are
associated with destinations (these states are persistent), and

whether a destination button, whose corresponding lamp is not lit,
has been pressed (this state is not persistent).

©Bcmrd Software Engineering, Inc., 1989 (10/'29/90)
18620 Matency Road, Gea'mantown, MD 20874
(301) 353-9652

Destination Panel

5

.

.

2.2.1.2

Since a given lamp will only be turned on or off based on a specific request,
a destination panel with any given number of lamps lit and not lit represents
a persistent state.

Assign: This constructor operation copies the state of one destination panel
object to another instance of the same class. Since the Assign operation
produces an exact copy of an existing destination panel, the resulting copy
may be in any one of the states shown in the STD. The Petri Net Graph
representation of the Assign operation is:

State Transition Diagrams for Spontaneous State Changes

Press Button N

2.2.1.2.1 Notes on State Transition Diagrams for Spontaneous State
Changes

lo Clients of the destination panel cannot "press" any of the destination panel
buttons.

) After a button is pressed, the destination panel immediately returns to the
state where that button is not pressed, i.e., a destination panel with any
given button pressed is a highly non-persistent state.

2. Clients of the destination panel arc notified that a particular destination panel
button has been pressed via the "Signal" operation. It is the computer
circuitry in the destination panel which will actuaUy provide the notification
that a pmticular destination button has been pressed.

18620 Mateney Road, Omm_town, MD 20874
(301) 353-9652 4

2.0

2.1

2.1.1

2.1.2

2.2

2.2.1

2.2.1.1

Graphlcal Representations

Static Representatlons

Semantic Networks

Notes

1.

.

I Destination Panel]

on the Semantic Network

From the outside view, there is no discemable structure or attributes for a
destination panel.

Though it seems obvious that the destination panel deals with buttons and
lamps, these objects can neither be detected or affected directly from the
"outside". It is for that reason that these objects do not appear on the
scmandc net.

Dynamic Representations

State Transition Diagrams

State Transition Diagrams for Non-Spontaneous State Changes

Turn Lamp N Off

Destinal
Turn Panel With Panel With Turn

Lamp N Lamp N Turned Lamp N Turned Lamp N
On On Off Off

2.2.1.1.1

.

.

Turn Lamp N On

Notes on State Transition Diagrams for Non-Spontaneous State
Changes

The states shown in the diagram cannot be interrogated. SpecificaUy, them
arc no operations provided that will allow a client of the abstraction to
determine ff a particular destination panel lamp is on or off.

A client may not interact directly with a specific destination panel lamp.
Clients deliver a request to turn a particular destination panel lamp on or off
to the "lamp on/off request port." It is the computer circuitry in the
destination panel which will actually turn a lamp on or off, or leave a lamp
in its particular state.

©Berant Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Destination Panel

3

.

,

.

.

s

.

10.

11.

The destination panel must notify the outside world that a particular
destination button has been pressed. It does this through a required
operation, Signal. Each destination button is associated with a specific
lamp, and the panel has the (internal) capability of determining which of its
lamps are lit. If someone presses a destination button for which the
associated lamp that is already lit, no (new) notification is passed to the
outside world. No facility is provided to determine the state of individual
buttons contained in the destination panel.

Obviously, any notification (to the outside world) that a specific destination
button has been pressed (i.e., done through the "Signal" operation) must
contain some way of uniquely identifying the specific desired destination.

Since, to all who must deal with the destination panel abstraction, the
destination panel appears to be changing its state spontaneously (i.e.,
specific destinations will be periodically requested), the destination panel is
an "object with life."

The required operation for the destination panel is: "Signal" (the user of a
destination panel that a button has been pressed).

The suffered operations for the destination panel are "Turn_On_Lamp" (for
a given destination), "Turn_Off_Lamp" (for a given destination), and
Assign (the state of one destination panel to another destination panel).

Users of the Destination_Panel class must also supply:

a class with discrete scalar values which will be used to uniquely
identify destinations, i.e., Destination_ID, and

a value of this class which will represent the largest permissible
value for a destination which can be specified by destination panels
which are instances of the Destination_Panel class. Valid
destinations will be represented by all values of the class
Destination_ID from the smallest value up to, and including, the
specified largest permissible value for a destination.

The state for a destination panel may be defined as:

the sum of the states of the lamps (i.e., on or off) which are
associated with destinations (these states are persistenO, and

whether a destination button, whose corresponding lamp is not lit,
has been pressed (these states are not persistent).

The exception Lamp_Not_Found is associated with a destination panel.

©Berard Softwm'oEn_g, Inc., 1989 00/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

DestinationPanel

2

Object and Class Specification
Class: Destination Panel

1.0 Precise and Concise Description

. Conceptually, a destination panel is a panel containing a number of
destination buttons (typically one for each reachable destination), a number

of lamps (typically one lamp for each destination button) and, potentially,
other devices. The destination panel also contains some computer

processing capability. This computer processing capability allows the
destination panel to turn particular lamps on and off based on requests, and
to inform the outside world when a particular destination button has been
pressed.

®

 iiii !iiii iii!ii i!iiZi
liii_®iiti®i_®ii®iil behind it

ii ii ii ii !iii

. At any one time, any number of lamps in the destination panel may be lit
(i.e., on). A given lamp in the destination panel becomes lit (i.e., is turned
on) based on an invocation of the Turn_On_Lamp operation. Once a lamp
becomes lit, it stays lit until the destination panel receives a request to turn

that lamp off, i.e., via an invocation of the Turn_Off_Lamp operation.
Likewise, a lamp remains off until a request is received to turn it on. Once a

particular lamp is lit (or turned off), any additional requests for the lamp to
be lit (or turned off) are ignored. No facility is provided to determine the

state of individual lamps contained in the destination panel.

° Obviously, any request to turn a given lamp on or off must contain some
way of uniquely identifying the specific lamp, and whether that lamp is to
be turned on or off. If the lamp identified in the request is not contained in
the destination panel, the exception Lamp_Not_Found will be raised.

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Destination Panel

1
3-: AR3

.

5.0

5.1

5.2

Append • a given bounded list to the specified
bounded list

Break_Up • a given bounded list, at a specified
position, into two specified sublists

State Informatlon

The state information for a bounded list is:

The current number of elements contained in the bounded list

Whether a given bounded list is empty

Whether a given bounded list is full

The specific elements stored in a given bounded list

The specific order of the elements stored in a given bounded list

Note that while most state information for a given bounded list may be determined
via the invocation of a single operation, the specific order of the elements in a given
bounded list may require the invocation of many operations to be determined
accurately.

Constants and Exceptions

Constants

1. This class will provide the constant "empty list".

Fatoepflomt

1. This class will provide the following exceptions:

The exception Overflow will be raised if a user tries to: insert an
element into a full list, copy a list into another list which has a
smaller upper limit of the number of elements than the former does,

append a list into another list whose number of unused spaces is less
than the current number of elements in the former list, or break up a

list into lists whose total maximum lengths are smaller than the

current length of the list to be broken up.

The exception Underflow will be raised if a user tries to remove an
element from an empty list.

The exception Element Not Found will be raised if a user specifies
a non-existent element _r a n_n-existent element location.

©lkrard Software Engineering, Inc.. 1989 (1(_29/90)
18620 Mateney Road. Gennantown, MD 20874
(301) 353-9652

Bounded List

6
3E: AR3

• Test for equality

• Assignment

* Set to "zero"

• Increment"by one"

• _ment "by one"

32 Suffered Operations

Operation

• C']¢ar

• Insert

• Remove

• Length_Of

• Copy

• lilt

• Is_Empty

• Is_Full

of one of the elements to be placed in
the list with another element of the same
class

of the value of an instance of the class
used to "count" the number of elements

in a given bounded list to another
instance of the same class

for the class used to indicate the length
of the bounded list

the value of an object of the class used

to indicate the length of the bounded list

the value of an object of the class used
to indicate the length of the bounded list

Method

the contents of a given bounded list,
ie., removes all elements from the

specified bounded list

a given element into a given bounded
list

a given element from a specified
bounded list

a specified bounded list

the contents of a given bounded list into
another specified bounded list
producing a bounded list identical in
contents to the original bounded list

tests for the equality of two specified
bounded lists. Two bounded lists are

equal if the current lengths of both lists
are the same, and if the values of the

corresponding elements in both lists are
the same.

determines if a given bounded list is
empty

determines if a given bounded list is
full, i.e., it contains the maximum
number of elements

©Berard Software Engineering, Inc., 1989 (10/'29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Bounded List

5

d° Break Up: This constructor operation splits a given list at a
specified location and puts the results in two sublists. The original
bounded listwillbecome an empty list.Depending on boththestate
of theoriginalbounded listand thelocationspecifiedforbreaking
thelist,eachofthetwo sublistsmay be inany ofthestatesshown in
theSTD.

O_atlofls

R_ulredOpemtlo_

Assignment

Operation Method

of the value of an element to be placed
in the list to another element of the same
class

OBerard Softwm'e Engineering,Inc., 1989 (10/29/90)
18620 Mgmey Road, Gcnnantown, MD 20874
(301) 353-9652

Bounded List

4

2.2.1.1.1

I.

.

.

*

.

.

.

Notes on State Transition Diagrams for Non-Spontaneous State
Changes

Node A represents an empty bounded list. Node B represents a bounded list
with one element. Node C represents a full bounded list. Node E represent a
bounded list containing some elements.

The state transition "insert maximum number of elements " may be
accomplished by repeated application of the "insert" operation.

The state transition "remove all but one element" may be accomplished by
repeated application of the "remove" operation.

The selector operation Length_Of may be used to determine if a bounded list
is empty, contains one element, or contains some elements.

The selector operation Is Full may be used to determine if a bounded list
contains its maximum allotted number of elements.

The selector operation Is_Empty may be used to determine if a bounded list
contains no elements.

The following operations all require two or more bounded lists, and thus
cannot be accurately shown on a single STD:

no "=" : This selector operation is the test for equality of two bounded
lists. This operation compares the states of two different bounded
lists.

b* Copy: This constructor operation copies one entire bounded list to
another bounded list. Since the Copy operation produces an exact
copy of an existing bounded list, the resulting copy may be in any
one of the states shown in the STD.

C* Append: This constructor operation appends one bounded list to
another bounded list. The Append operation will result in a bounded
list which may be in any one of the states shown in the STD.

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Matency Road, Gcrmantown, MD 20874
(301) 353-9652

Bounded List

3

2.0 Graphlcal Representatlons

2.1 Statlc Representatlons

2.1.1 Sernantlc Networks

has attribute

:-] Length I

3 Full
-I

_i_C_l _lLocation
[Bounded_List] [has_attribute -I

I"as-part Node[

- -[_----_ Element I

2.1.2 Notes On the Semantic Networks

. The attribute "(is the bounded list) empty" can be determined directly from
the "length (of the bounded list)" attribute. Hence, we do not show this
attribute separately.

2.2 Dynamic Representatlons

2.2.1 State Tmnsltlon Diagrams

2.2.1.1 State Transition Diagrams for Non-Spontaneous State Changes

Clear

Insect
Remove all but
one element Remove

Insert Maximum
imber of Elements

Clear

©Berard Software Engineering, Inc., 1989 (10/'29/90)
18620 Mateney Road, Gennantown, MD 20874
(301) 353-9652

Bounded List

2

Object and Class Specification
Class: Bounded List

1.0 Precise and Concise Description

, A linear list (or simply, list) is defined to be "a set ofn >= 0 nodes X[1], ...

X[n] whose structural properties essentially involve only the linear (one-
dimensional) relative positions of the nodes: if n > 0, X[1] is the first
node; when 1 < k < n, the k th node X[k] is preceded by X[k - 1] and
followed by X[k + 1]; and X[n] is the last node." (See [Knuth, 1973].) The
number of elements (n) is called the length of the list. If n = 0, then the
list is said to be empty.

. A bounded list is a list which has aftxed limit on the maximum number

elements that can be stored in it. A user will have to specify the maximum
length of a bounded list when a list object is declared.

. The following is a list of operations that can be applied to a bounded list:
clear a list, insert an element into a list, remove an element from a list, find

out the current length of a list, copy a list to another list, check whether one
list is equal to another list, check whether a list is empty, check whether a
list is full, append one list to the end of another list, and break a list into two
parts.

, The user is not concerned with the type of elements that can be put in the

list. The class of the elements to be placed in the list must be supplied by
users of this class. The following required operations for the list must be
applicable to the class of the elements to be placed in the list. The required
operations are: assignment (of the value of one element to another), and test
for equality (of the value of one element with another).

. Users of the bounded list class must also supply a class which will be used
to "count" the number of elements in a given bounded list, and which will
also be used to identify locations within the list. The required operations for
this class are assignment (of one value of an instance of this class to
another), set to "zero" (set the value of an instance of this class to indicate
no elements in a given bounded list), increment ("by one"), and decrement
("by one").

6. This class will export the exceptions Underflow, Overflow, and
Element_Not_Found.

7. This class will export the constant "empty list."

[Knuth, 1973]. D.E. Knuth, The Art of Computer Programming, Volume 1:
Fundamental Algorithms, Second Edition, Addison-Wesley, Reading,
Massachusetts, 1973.

©Berard Software Engineering, Inc., 1989 (10/29/90) Bounded List
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652 1

4.0

5.2

Value_Of

Value_Of

Value_Of

Value_Of

Value_Of

Value_Of

Value_Of

Value_Of

Assign

• Returns the state of the Vendor Number
component of a bid.

• Returns the state of the Bid Date
component of a bid.

• Returns the state of the FOB component
of a bid.

• Returns the state of the Freight Cost
component of a bid.

• Returns the state of the Estimated Lead
Time component of a bid.

• Returns the state of the Spe_al
Instructions component of a bid.

• Returns the state of the Vendor Terms
component of a bid.

• Returns the state of the Total Weight
component of a bid.

• Assigns the state of one Bid object to
mother.

State Infornwtion

The _tate of an bid is the sum of the states of all its component parts. Each
component part's state is independent of the state of any other component
part.

Constants and Exceptlons

Constants

1. This class will not provide any constants.

Exeepeorm

1. This class will not provide any exceptions.

©BenudSo_ Engineering,Inc., 1989(10/29/90)
18620 MateneyRoad, Gefmantown,MD 20874
(301) 353-9652

Bid

6

• Assign

• Assign

3.2

• Set

Suffered Operations

Operation

• Set

• Set

• Set

• Set

• Set

• Set

• Set

• Set

• Set

• Set

• Value._Of

• Value_of

• Value_Of

@Berard Softwaze Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Bid

5

Assigns the state of one Vendor Terms
object to another.

Assigns the state of one Total Weight
object to another

Method

Sets the state of the Bid Item List

component of a bid.

Sets the state of the Buyer Location
component of a bid.

Sets the state of the RFQ Number
component of a bid.

Sets the state of the Vendor Number

component of a bid.

Sets the state of the Bid Date component
of a bid.

Sets the state of the FOB component of
a bid.

Sets the state of the Freight Cost
component of a bid.

Sets the state of the Estimated Lead

Time component of a bid.

Sets the state of the Special Instructions
component of a bid.

Sets the state of the Vendor Terms

component of a bid.

Sets the state of the Total Weight
component of a bid.

Returns the state of the Bid Item List

component of a bid.

Retttms the state of the Buyer Location
component of a bid.

Returns the state of the RFQ Number

component of a bid.

2.2.1.1.1

.

S_ (TotalWeir) to sine Y

Set (Tel,a Wt_hl) to B X

Notes on the State Transition Diagrams for Non-Spontaneous
State Changes

There is a selector and a constructor operation provided for each component
part of a bid. Each constructor operation changes the state of only one
component part.

Operations

Required Ol_m_ons

Operation

• Assign

• Assign

• Assign

• Assign

• Assign

• Assign

• Asslgn

• Assign

• Assign

Method

Assigns the state of one Bid Item List
object to another.

Assigns the stateofone Buyer Location

objectto another.

Assigns the state of one RFQ Number
object to another.

Assigns the state of one Vendor
Number object to another.

Assigns the state of one Bid Date object
to another.

Assigns the state of one FOB object to
another.

Assigns the state of one Freight Cost
object to another.

Assigns the state of one Estimated Lead
Time object to another.

Assigns the state of one Special
Insu'uctions object to another.

©Bea'ardSoftwwe Engineednl_ Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Bid

4

2.2 Dynamic Representations

2.2.1 State Transition Diagrams

2.2..1.1 State Transition Diagrams for Non-Spontaneous State Changes

S_ (Bid It_n List) to slate Y

Set (Bid Itm_ List) to state X

Set (Buyer Local_on) to state Y

S_ (B_uyer Lo<_t_n) to state X

Set (RFQ Number) to #tare Y

Set (RFQ Number) to state X

ScK(Vecidor Number) to state Y

Set (Bid Date) to stato Y

Set (Bid Dat_) =o=tare X

Set (FO6) to =late Y

Set (FOB) to =tam X

S@I(Freight Cost) to =late Y

Set (Freight Cost) to slam X

Set (EstJmaWd Lead T_me) to slate Y

Set (V_ Number) to state X Set (EslJmat_l Lead Tmrte) to site X

Set (Special Inslrucltons) to slate Y Set (Vendor Terms) to =ale Y

Sel (Spedal Instrucllons) to state X Set (Vatdor Terms} Io gale X

18620 Mal_ey Road, Germantown, MD 20874
(301)353-9652 3

2.0

2.1

2.1.1

GmphlcaJ Representatlons

Static Representatlons

Semantic Networks

BID I

hU..l_d
-_[_ Bid Illm Lilt I

[E]-_.°- N
E?-t - INumber

Vendor J- Number

r-_ .,dNo.

Location

DMJ

Cost

Vendor ITerme

T°_'l _ Weight IWeight

2.1.2 Notes on the Semantic Networks

1. The component parts of the bid are independent, i.e. a change in the state of
any component will not change the state of any other component pan.

OBerard Softwsse Engineering, Inc., 1989 (lor29_3o)
18620 Mateney Road, Gennantown, MD 20874

(301) 353-9652

Bid

2
3--:_-¥;D

Object and Class Specification
Class: Bid

1.0 Precise and Concise Description

° A bid represents a document containing all information that a vendor would

supply to a customer in response to a request for quote (RFQ). The
information supplied by the document includes the following: a list of the
items being supplied by the vendor, the location of the buyer, the RFQ
number, the vendor number, the date of the bid, FOB, the freight costs for
the bid, the estimated lead time required, any special instructions, the
vendor's payment terms, and the total weight of the order.

2. The state of a bid is the state of its component pans.

. The required operations for a bid are: Assign (one Bid Item List to another),
Assign (one Buyer Location to another), Assign (one RFQ Number to
another), Assign (one Vendor Number to another), Assign (one Bid Date to

another), Assign (one FOB to another), Assign (one Freight Cost to
another), Assign (one Estimated Lead Time to another),Assign (one Special
Instructions to another), Assign (one Vendor Terms to another), and Assign
(one Total Weight to another),.

4. The suffered operations for a bid are:

ao Constructor operations are: Set (Bid Item List), Set (Buyer
Location), Set (RFQ Number), Set (Vendor Number), Set (Bid
Date), Set (FOB), Set (Freight Cost), Set (Estimated Lead Time),
Set (Special Instructions), Set (Vendor Terms), and Set (Total
Weight).

b. Selector operations are: Value_Of (Bid Item List), Value_Of (Buyer
Location), Value_Of (RFQ Number), Value_Of (Vendor Number),
Value_Of (Bid Date), Value_Of (FOB), Value_Of (Freight Cost),
Value_Of (Estimated Lead Time), Value_Of (Special Instructions),
Value_Of (Vendor Terms), and Value_Of (Total Weight).

C, Additional operation (for completeness) is Assign(one Bid to
another).

5. There are no exceptions associated with a bid.

6. There arc no constants associated with a bid.

. The Bid class requires that eleven classes be imported to correspond to the
following: Bid Item List, Buyer Location, RFQ Number, Vendor Number,
Bid Date, FOB, Freight Cost, Estimated Lead Time, Special Instructions,
Vendor Terms, and Total Weight. There are no restrictions placed on these

imported classes.

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Bid

1

5.2

. A Write_Only_Port is momentarily in a different state when it is writing
values represented as bit patterns.

Constants and Exceptions

Constants

1. This class provides no constants

EX_I_JoIMI

4 This class provides an exception Address_Not_Defined which is raised if an
attempt is made to read from a port which has not been assigned to an
address, or if a port which has not been assigned an address is queried as to
its address.

©eerard Software Engineering,b_:., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Write Only Port

4

2.2.1.1.1

.

.

.

Notes on State Transition Diagrams for Non-Spontaneous State
Changes

A given Write Only_Port object cannot be read from, or queried about its
address until it has been assigned an address.

After writing a value the Write_Only_Port immediately returns to an inactive
state.

The Assign operation requires two instances of the the class
Write_Only_Port, and therefore cannot be shown on a state transition

diagram. The Petri Net Graph for the Assign operation is:

3.0 Operations

3.1 Required Operations

3.2

1. The Write_Only_Port class has no required operations.

Suffered Operations

Operation

• Set_Address

• Address_Of

• Assign

• Write

State Information

1.

4.0

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Gennantown, MD 20874
(301) 353-9652

Method

• Dynamically assigns an address to a
Write_Only_Port

• Returns the address of a port

• Assigns the state of one
Write_Only_Port object to another

• A value of the given integer class to a
given Write_Only_Port

The address of a Write_Only_Port object can be changed and queried.

Write Only Port B___
3

° The suffered operations for the Write_Only_Port are Set_Address
(dynamically set the address for the port), Address_Of (the specified port),
Assign (one the value of one Write_Only_Port to another), and Write (a
specified bit pattern to a given Write_Only_Port).

7. The Write_Only_Port class will provide no constants.

8. The Write_Only_Port class will provide an exception:
Address_Not_Def'med.

2.0 Graphical Representations

2.1 Statlc Representatlons

2.1.1 Semantic Networks

: [System_Address I

I has_attribute

Jwrite-on,yPortJ

2.1.2 Notes on the Semantic Networks

2.2 Dynamic Representatlons

2.2.1 State Tmnsltlon DIagmma

2.2.1.1 State Transition Diagrams for Non-Spontaneous State Changes

Set_Address

OBe, m_ $o_ Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Gezmantown, MD 20874
(301) 353-9652

Write Only Port

2

, r,.a,_'*

Object and Class Specification
Class: Write_Only_Port

1.0 Precise and Concise Description

. A "port" is an abstraction of a highly-localized interface between two pieces
of hardware in a (potentially embedded) computer system. A port is a place
where information can be transferred into, out of, or to and from, a
hardware component.

2. A port has several distinguishing characteristics:

an address. Every port in a system must be directly, or indirectly,
addressable within the "address space" (i.e., the set of all allowable
addresses) of the cpu (central processing unit) charged with dealing
with the port.

a width (measured in bits). The width of a port refers to how many
bits may be simultaneously read from, or written to, the port. It is
assumed that the bits are contiguous.

whether it is read-only, write-only, or read-write (i.e., bi-

directional). Often, ports are uni-directional, that is, they can either
be read from or written to, but not both.

, The purpose of the port abstraction is to provide a uniform interface for
instances of other classes which use ports. Internally, ports deal with the
unique characteristics of the hardware for which they were created.

Externally, they present a constant and uniform interface for objects which
must deal with ports.

° Ports view information only as "bit patterns." For example, if a four-bit
wide port provides the value 10112 , it places no special significance, or

meaning, on this value. Interpretations of bit patterns are left to the clients of
the port.

. In reality, the Write_Only_Port class is a metaclass. Users of the
Write_Only_Port class must supply:

a width (i.e., a non-zero, positive integer value) which will be used

to set a fixed width (in bits) for all instances of the Write_Only_Port
class,

an integer class which will be used to contain the values written by
the port, and

a system address class, instances of which will be used to
dynamieaUy assign a given Write_Only_Port to a specific system
address.

©Bcrard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Gea-mantown, MD 20874
(301) 353-9652

Write Only Port

I

5.2

° The creation of aliases for instances of this class does change their states,
i.e., they now have aliases. Therefore, part of the state information for an
instance of this class is whether the instance has aliases.

Constants and Exceptions

Constants

1. This class will provide no constants.

Exeol_ons

1. This class will provide the following exceptions:

Mechanical_Failure: raised if the motor is not able to respond to a
request.

Not_Stopped: raised if the motor's rotor is rotating in a particular
direction (e.g., clockwise), and an attempt is made to cause it to
rotate in the opposite direction without first stopping the motor.

_DBcraxdSof_m_ Enginoexing, Inc., 1989 (10_/90)
18620 Maumey Road, Getmantown, MD 20874
(301) 353-9652

SharedMowr

5

Share

2.2.1.1.1 Notes on State Transition Diagramsfor Non-Spontaneous State
Changes

. The operadons: Is_Rotating_Clockwise, Is_Rotating_Counterclockwise,
and Is_Stopped, are selector operations which can be used to determine if a
given motor is in one of the states shown.

. The operation Is_Shared can be used to determine if a given motor object
has aliases.

, The operation "assign" requires two instances of this class, and, thus,
cannot easily be shown on a simple state transition diagram. The Petri Net
Graph representation of this operation is:

3.0 Operations

3.1 Required Operatlons

Operation Method

• Rotate_Clockwise • Connects the motor with the necessary
operations to rotate clockwise.

• Rotate_Counterclockwise • Connects the motor with the necessary
operations to rotate counterclockwise.

• Stop • Connects the motor with the necessary
operations to stop.

©Berard Softwar¢ Engineering, Inc., 1989 (10/29/90)
18620 Maleney Road, Gennantown, MD 20874
(301) 353-9652

Shared Motor

3

3.2

4.0

Is_Rotating_Clockwise Connects the motor with the necessary
operations to determine if the motor's
rotor is rotating clockwise

Is_Rotating_Counterclockwise Connects the motor with the necessary
operations to determine if the motor's
rotor is rotating counterclockwise

Is_Stopped Connects the motor with the necessary
operations to determine if the motor's
rotor is stopped

Suffered Operations

Operation Method

Rotate__Clockwise • Causes the motor's rotor to rotate
clockwise

Rotate_Counterclockwise • Causes the motor's rotor to rotate
counterclockwise

Stop • Causes the motor's rotor to stop
rotating

Is_Rotating..Clockwise • Returns true if the motor's rotor is

rotating clockwise

Is_Rotating_Counterclockwise • Returns true if the motor's rotor is

rotating counterclockwise

Is_Stopped • Returns true if the motor's rotor is not

rotating

Assign Assigns the state of one instance of this
class to another instance of the same
class

Share Allows for share semantics, i.e., allows
for the creation of aliases for instances
of the motor class.

Is_Shared • Returns true if the given instance of the
motor class has an alias.

State Information

1. The state information for a motor is:

The direction of rotation, which typically assumes values of:

clockwise, counterclockwise, and stopped.

©Beratd Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Shared Moto¢

4
3-R R3

2.0

2.1

2.1.1

.

chass.
There are no constants associated with the instances of the Shared_Motor

Gmphlcal Representations

Static Representations

Semantic Networks

-__ Direction of

has_attribute

I shared-M°t°r I

Notes on the Semantic Networks

1.

_ _Rotation I

_isa
Shared I - -_l Boolean I

,

2.1.2

2.2

2.2.1

2.2.1.1

Rotate

Direction of rotation can only assume one of three values: rotating
clockwise, rotating counterclockwise, and stopped.

While we can determine whether or not a given instance of this class has
aliases, we cannot determine how many aliases it has.

Dynamic Representations

State Transltlon Diagrams

State Transition Diagrams for Non-Spontaneous State Changes

Clockwise

Stop Rotate_Counterclockwise

Motor's Motor's Rotor Motor's Rotor Is

Is Rotating Is Stopped Rotating
Iockwisq Counterclockwise

Rotate_Clockwise

Stop
Stop

Rotate_Counterclockwise

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Shared Motor

2

Object and Class Specification
Class:Shared Motor

Precise and Concise Description

1. A motor is an abstraction of a physical motor device that converts energy
into movement. Movement is delivered in the form of the rotation of the

motor's rotor. A rotor may be viewed as a shaft which is part of a motor,
and to which varying devices may be attached.

Rotor

1.0

. "Share semantics" allow for the creation of aliases for an object. This has

the advantage of possible increases in time and space efficiency. However,
it increases the possibility of actions with unintended results, e.g.,
unintentional deletion or alteration of an object through operations

performed using the alias. (Instances of this class may have more than one
alias.)

. The suffered operations for a motor include movement operations

(rotate_clockwise, rotate_counterclockwise, stop),, operations for detecting
movement (is_rotating_clockwise, is_rotating_counterclockwise,
is_stopped), assign (the state of one instance of this class to another
instance of the same class) and operations for share semantics (share and

is_shared).

Q

5_

.

o

If a motor object is in the "stop" state then either the rotate_clockwise or
rotate_counterclockwise operations may be accomplished. If the motor's

rotor is rotating clockwise or counterclockwise, and rotation in the opposite
direction is desired, the motor must first be stopped. If a motor is in a

particular state, and an operation is invoked which would result in the motor
maintaining that state, no state changes will occur, i.e., the operation will be

ignored.

This motor abstraction represents a motor which produces movement of
constant speed, i.e., it is incapable of varying speeds of rotation.

The motor contains state information about the current direction of rotation,

or, more precisely, about the direction of rotation of the motor's rotor. The
allowed states for direction of rotation are: clockwise, counterclockwise,

and stopped. An additional piece of state information is whether a given
motor object has aliases, i.e., is shared.

The exceptions for a shared motor object are Mechanical_Failure and

Not_Stopped.

@BeraM Softvan Engineering, Inc., 1989 (10/'29/90)
18620 Malency Road, Crennantown, MD 20874
(301) 353-9652

Shared Motor

1

3.0

3.1

3.2

Operations

Required Operations

Operation

Signal

Suffered Operations

Operation

• Set_Address

• Address_Of

• Assign

4.0

5.2

State Informatlon

Method

The action(s) clients of the
Read_Only_Port want the port to take
when information arrives at the port.
This usually involves the actual
transference of the information.

Method

• Dynamically assigns an address to a
Read_Only_Port

• Returns the address of a port

• Assigns the state of one
Read_Only_Port object to another

1. The address of a Read_Only_Port object can be changed and queried.

2. A Read_Only_Port is an object with life. Specifically, it periodically and
"spontaneously" produces values represented as bit patterns.

Constants and Exceptions

Constants

1. This class provides no constants

Exceptions

1. This class provides an exception Address_NoLDefined which is raised if an
attempt is made to read from a port which has not been assigned to an
address, or if a port which has not been assigned an address is queried as to
its address.

@Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Read Only Port

4

2.2.1.1.1

I.

.

2.2.1.2

2.2.1.2.1

I,

Notes on State Transition Diagrams for Non-Spontaneous State
Changes

A given Read_Only_Port object cannot be read from, or queried about its
address until it has been assigned an address.

The Assign operation requires two instances of the the class
Read_Only_Port, and therefore cannot be shown on a state transition
diagram. The Petri Net Graph for the Assign operation is:

State Transition Diagrams for Spontaneous State Changes

Value Arrives

Notes on State Transition Diagrams for Spontaneous State

Changes

When information arrives at the hardware port that information will be
transferred to software clients of the port via a Signal operation. Thus,
clients of a port will not have to poll the port.

©Berard Software Engineering. Inc., 1989 (10/29/90)
18620 Mate_y Road, Germ_mtown, MD 20874

(301) 353-9652

Read Only Port

3

r,A)

Object and Class Specification

Class: Read_Only_Port

1.0 Precise and Concise Description

. A "port" is an abstraction of a highly-localized interface between two pieces
of hardware in a (potentially embedded) computer system. A port is a place
where information can be transferred into, out of, or to and from, a
hardware component.

2. A port has several distinguishing characteristics:

an address. Every port in a system must be directly, or indirectly,
addressable within the "address space" (i.e., the set of all allowable

addresses) of the cpu (central processing unit) charged with dealing
with the port.

a width (measured in bits). The width of a port refers to how many
bits may be simultaneously read from, or written to, the port. It is
assumed that the bits are contiguous.

whether it is read.only, write-only, or read-write (i.e., bi-
directional). Often, ports are uni-directional, that is, they can either
be read from or written to, but not both.

. The purpose of the port abstraction is to provide a uniform interface for
instances of other classes which use ports. Internally, ports deal with the
unique characteristics of the hardware for which they were created.
Externally, they present a constant and uniform interface for objects which
must deal with ports.

. A Read_Only_Port is an "object with life," i.e., there is no software

mechanism for changing some aspects of the state of the port. Clients of the
Read_OnlyPort, for example, cannot force the Read_Only_Port to provide
them with information at any given time. They must wait for the port to
provide them with information. Ports do not buffer information, i.e., if the
information is not read when it becomes available, the information is lost.

. Ports view information only as "bit patterns." For example, if a four-bit

wide port provides the value 10112 , it places no special significance, or

meaning, on this value. Interpretations of bit patterns are left to the clients of
the port.

. The Read_Only_Port has one required operation ("Signal") which contains
the actions the client wishes to accomplish when information arrives at the
hardware port m usually includes the transference of that information.

. The suffered operations for the Read_Only_Port are Set_Address

(dynamically set the address for the port), Address_Of (the specified port),
and Assign (one the value of one Read_Only_Port to another).

©BerardSoftwm-eEngineering,Inc.,198900/29/90)
18620MateneyRoad,Germantown,ME) 20874
(301)353-9652

Read Only Port

I

,

2.0

2.1

2.1.1

2.1.2

2.2

2.2.1

2.2.1.1

In reality, the Read_Only_Port class is a metaclass. Users of the
Read_Only_Port class must supply:

a width (i.e., a non-zero, positive integer value) which will be used
to set a fixed width (in bits) for all instances of the Read_Only_Port
class,

an integer class which will be used to contain the values read by the
port, and

a system address class, instances of which will be used to
dynamically assign a given Read_Only_Port to a specific system
address.

The Read_Only_Port class will provide no constants.

The Read_Only_Port class will provide an exception:
Address_Not_Def'med.

Gmphlcal Representations

Static Representations

Semantic Networks

I has_attribute

IRead-O ,y I

I System_Address]

Notes on the Semantic Networks

Dynamic Representations

State Transition Dlagmms

State Transition Diagrams for Non-Spontaneous State Changes

Set_Address

©B_-ard Softwaae Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Gennantown, MD 20874
(301) 353-9652

Read Only Port

2
3-:FV 3

Object and Class Specification
Class: Button

1.0 Precise and Concise Description

o A "real world" button is made of some hard material (usually plastic and
metal) and is used to signal the occurrence of some external event (usually
by closing a circuit). In most cases, a button is a two state device (e.g.,
"pressed" and "not pressed") although it is possible for a button to have
more than two states.

2.0

2.1

2.1.1

 TT__
2. A button is an "object with life" which is used by an outside source to

request service from the system.

3. The required operations for the button are Signal and Press. Press is the
operation which connects an instance of this class with the "outside world"

(e.g., with a port) so that it knows that a "real world" button has been

pressed. Signal is an operation which allows the button to alert a designated
object, or system of objects, that it has been "pressed."

4. Buttons have no suffered operations. [However, hardware ("real world")
buttons suffer the operations of being pressed and released.]

5. The states that the button may be in are "pressed" and "not pressed."
Neither of these two states is very persistent.

6. There are no constants or exceptions associated with the button.

Graphical Representations

Statlc Representatlons

Semantlc Networks

Bu on

2.1.2 Notes on the Semantic Networks

1. To the outside world, a button is a simple object.

©Berard Softwa_'¢Engineering, Inc., 1989 (10/29/90) Button
18620 Mateney Road, Germantown, ME) 20874
(301) 353-9652 1

2.2

2.2.1

2.2.1.1

1.

2.2.1.1.1

2.2.1.2.1

Dynamic Representatlons

State Transltlon Olagmms

State Transition Diagrams for Non-Spontaneous State Changes

Not Applicable.

Notes on State Transition Diagrams for Non-Spontaneous State
Changes

There are no non-spontaneous state changes for this class.

State Transition Diagrams for Spontaneous State Changes

Press

.

*

Release

Notes on State Transition Diagrams for Spontaneous State
Changes

The "button abstraction" knows when the "real world" button has been
pressed via a required operation, i.e., "Press."

When the "button abstraction" is made aware that the "real world" button
has been pressed, it invokes the "Signal" operation.

Operations

Required Operations

Operation

• signal

• Press

Method

3.2 SufferedOpomtlons

I.

Alerts the button's client that the button
has been pressed and returns the
buttons identification.

Alertsthebuttonthatithasbeen

"pressed"

Buttons have no suffered operations. [However, hardware ("real world")
buttons suffer the operations of being pressed and relcased.]

©Berard Softw=_ FJagimnring,Inc., 1989 (10/29/90)
18620 Mateaey Road, Germattown, MD 20874
(301) 353-9652

Button

2

4.0

5.2

State Information

I. The states that thc button may be in are pressed and not pressed.

Constants and Exceptions

Constants

1. This class will neither provide or require any constants.

Exceptions

1. This class will neither provide or require any exceptions.

©Berard Software Engineering, Inc., 1989 (10/29/90) Button
18620 Maumey Road, Germantown, MD 20874
(301) 353-9652 3

2.2

2.2.1

2.2.1.1

2.2.1.1.1

Dynamlc Representatlons

State Tmnsltlon Dlagmms

State Transltlon Diagrams for Non-Spontaneous State Changes

Turn on

I*

*

Turn _rn off

Turn off

Notes on State Transition Diagrams for Non-Spontaneous State
Changes

Note that the operation Turn_On has no effect if the lamp is ah'eady on and
Turn_Off has no effect if a lamp is already off.

The Is_On selector operation can bc used to determine the state of a given
instance of this class.

3.0 Operations

3.1 Requlred Operatlons

Operation

• Tum_On

• TtLm_Off

3.2 Suffered Oporatlons

Operation

• Turn_On

• Tum_Off

• Assign

• Is_On

©Bcrard Software Engineering, Inc., 1989 (10/'29/90)
18620 Mate_y Road, Gerraanwwn, MD 20874
(301) 353-9652

Method

Connects the lamp abstraction with the
means of mining the physical lamp on.

Connectsthelamp abstractionwiththe
means ofturningthephysicallamp off.

Method

• Turn thelamp on.

• Turn thelamp off.

• Assignthestateofone instanceofthis
classtoanotherinstanceofthesame
class

• Returns true if a given instance of this
class is in the "on" state.

Lamp

2

4.0

5.2

State Information

1. The states that the lamp may be in arc "on" and "off."

Constants and Exceptions

Constants

1. This class will provide no constants.

Exceptions

1. This class will provide no exceptions.

©Berard Software Engineering° Inc., 1989 (10/29/90) Lamp
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652 3

."I..- ; ", , _ "_" ..

3--: AR3

